Learning fuzzy classification rules from labeled data
نویسندگان
چکیده
The automatic design of fuzzy rule-based classification systems based on labeled data is considered. It is recognized that both classification performance and interpretability are of major importance and effort is made to keep the resulting rule bases small and comprehensible. For this purpose, an iterative approach for developing fuzzy classifiers is proposed. The initial model is derived from the data and subsequently, feature selection and rule-base simplification are applied to reduce the model, while a genetic algorithm is used for parameter optimization. An application to the Wine data classification problem is shown. 2002 Elsevier Science Inc. All rights reserved.
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملUSING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS
This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...
متن کاملPartially supervised learning of fuzzy classification rules
The research area of Data Mining or Knowledge Discovery in Databases has emerged in response to the challenges of analyzing the tremendously growing datasets gathered nowadays by companies and research institutions. Classification is one important task of data mining, where fuzzy techniques to extract classification rules from data are appealing due to their human understandable modeling. Often...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 150 شماره
صفحات -
تاریخ انتشار 2003